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Two methods of processing data from photon correlation studies of polydisperse polymer samples in 
dilute theta solution have been compared using computer generated correlation functions. Force-fitting 
a single exponential to the data gives a value for the diffusion coefficient D only slightly less than D z, the 
z-average value returned by the cumulants method. Both methods are shown to give the same 
concentration dependence for D. 
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In studies of the diffusion of polymers in dilute solution 
by photon-correlation spectroscopy ~, two procedures are 
commonly used in analysing the data to obtain the 
diffusion coefficient D: these are the method of cumulants 
and force-fitting a single exponential to the data. In this 
communication, the two methods are compared by 
applying them to data that has been computer-generated 
to simulate results from polydisperse samples. It will be 
shown that, although the methods give different averages 
of D, they both correctly determine the concentration 
dependence of D for a polydisperse sample in dilute theta 
solution. 

The normalized intensity autocorrelation function 
g(2)(z) of the light scattered from a dilute polymer solution 
is related to the first-order (optical) correlation function 
g~)(r) through the Siegert relation: 

g(Z~(z) = 1 + fllg(1)(z)12 (1) 

where fl is a factor less than unity which depends on the 
optical arrangement. For a perfectly monodisperse 
sample of small molecular size, 

Ig")(z)[ = exp( - FT) 

where F = D K  2 and K is the scattering vector 
(=  (2zff2)sin(0/2) where 2 is the wavelength of the light in 
the solution and 0 the scattering angle). The radius of 
gyration R o has to be sufficiently small so that 
x = K 2 R 2 < O . 1 ,  otherwise intramolecular motion will 

way 2. distort g(x)(z) in a complicated Except for the 
highest molecular weights (M>10 7) or the broadest 
distributions with substantial tails in this region, the 
condition can be met by carrying out the experiment at 
sufficiently low angle. 

Even for narrow fractions, ]g(1)(T)[ should be 
represented by a distribution of exponentials: 

]g"~(0l = fG(F)exp(- F0dF.  (2) 

G(F) is a distribution function which depends on the 
distribution of molecular weightsf(M) and some function 
of the polarizability of the molecule #(M) as well as the 
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Debye scattering factor P(x)[=(2/x2)(e - x -  1 +x)]; the 
latter can be written as P(K,M) since R o = Rg(M). 

The linear concentration dependence of D in dilute 
solution can be written as D = Do(1 + k~c), where D o is the 
value of D at infinite dilution and c is the concentration. In 
a previous communication 3 it was established that the 
appropriate value for the coefficient ko for a polydisperse 
sample in a theta solution was the weight-averaged value, 
k-°~, and that this single coefficient determines the 
concentration behaviour of all molecular-weight species 
in the polydisperse solution. As a result, G(F) scales 
linearly with c: 

G(F,c) = 60(I"o)/(1 + k-°oc) (3) 

where F=F0(1 +k-°oc). Here, G(F,c) expresses explicitly 
the concentration dependence, and Go(Fo) is the 
distribution function at infinite dilution. The non-theta 
case is more complex because the second virial coefficient 
A z is non zero; it will not be considered in this 
communication 

Fitting procedures 

In the cumulants method of data analysis 4, the 
logarithm of Ig(I~(T)I is fitted to a second-order polynomial 
in T: lnlg")(z)l = ao + alT + a2 T2. The procedure is carried 
out for a sequence of runs at decreasing values of Tma~, the 
delay time of the last channel. Thus shorter spans of trace 
are fitted, and the limiting value of a 1 as T approaches zero 
yields the z-average value of D: a~ = -D=K 2 as To0. The 
limiting values of al and a2 together give a measure of the 
polydispersity of the sample. For the theta case, 

M J M .  ~ 1 = 8a2/a 2 (4) 

A detailed discussion of the method has recently been 
given by Selser s. 

The experimentally determined correlation function 
C(z) of the scattered intensity is normalized to obtain 
g~2)(T) by dividing each point by a far point, ideally C(oo), 
or by a normalization constant obtained from the 
monitor channels of the correlator. In either case, 
unavoidable statistical fluctuations and chance events in 
the detection system will introduce error into the divisor, 
with a resulting error in all the derived points of g(2)(Z). In 



practice, these points would be better represented by the 
expression gt2)(r)=l+fllgm(r)12+,$, where 6 is a small 
'misnormalization' term (<< fl) which will vary from run 
to run on the same sample. 

In the above fitting procedure, it is not possible to allow 
for this additional term, and its neglect will introduce a 
systematic error in all the points of IgtX)(z)l; this will 
particularly influence the value obtained for a2. Thus, 
while it is unlikely that any appreciable error will occur in 
the value obtained for D, from at, any conclusions drawn 
about polydispersity from a 2 may be misleading, 
especially, if a2 varies from run to run. 

An alternative method of data fitting automatically 
accommodates the uncertainty in the baseline by force- 
fitting a single exponential function plus a constant to the 
normalized experimental data. The function 
1 + e e x p ( - B r ) + e  is fitted with c~, B and e as adjustable 
parameters. The value /) obtained from B ( = 2 / ) K  2) 
represents some average value of D for the distribution, 
and the parameter e(<<7) incorporates the fluctuating 
misnormalization term 6. This procedure gives 
reproducible values for B from run to run ° provided the 
same length of trace is fitted; "['max is usually set to equal 
four decay times (4/B) in order to avoid too long a tail or 
too little curvature. 

Although L) is not a simple and recognizable average of 
the molecular weight distribution, this usually presents no 
problems since well-defined average values for D are 
rarely required. Rather, one is interested in the way in 
which /) varies under changing conditions, such as 
concentration, and under theta conditions the variation of 
any average value of D with concentration will give/~o. 

It remains to be shown that, for the theta case, the 
single-exponential force-fit procedure does indeed return 
a value of/i3 which is the same average of the molecular 
weight distribution whatever the concentration, provided 
that the length of trace fitted always spans the same 
number of decay times (I/B). This can be seen by 
expressing 10(l)(r)l (equation (2)) in terms of Go(Fo). 
Writing 1 + / ~ :  as 7 for short, we have G(F,c) = G0(F0)/7 
(equation (3)) and F = T F  o. Since 7 is a constant for a 
particular solution, independent of F, dF/dF 0=), and 
thus equation (2) becomes 

Ig(1)(r)l = fGo(Fo)exp( - Fz)dFo 

= fGo(Fo)exp( - Fo?z)dF o. 

The value of the integral evaluated at a particular value of 
7r is seen to be independent of c, and so the shape of the 
correlation function is the same at all concentrations 
when plotted against yr. By setting the sample time T~ 
between data points on the correlator to be proportional 
to 1/7, the shape of the finite span of the correlation 
function that is fitted will be the same at all 
concentrations. This is what is done in adjusting T~ to 
make the trace span a definite number of force-fit decay 
times. 

Data 9eneration and fitting 
Data for the 48 points of the simulated correlation 

functions were constructed for two different molecular 
weight distributionsf(M), a log-normal distribution and a 
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uniform distribution (i.e.f(M) constant over a range of M, 
and zero outside this range). For each distribution, three 
different polydispersity ratios were considered with 
Mw/M,=I.06, 1.12 and 1.18, and the two fitting 
procedures were applied to the data for a wide range of 
spans to see the effect of varying the length of trace. 

Since the amplitude of the light scattered by a molecule 
is proportional to M, G(F) is proportional to M 2 as well as 
f(M). Thus 

~(r)dI" oc f ( M)M2(dM /dF)dF 

which, for the theta case where F<M-~!2 ,  becomes 

a(r)dr  f'(r)r 7dr 

since (dM/dF)ocF-3; f ' (F)  is the function f (M)  
transformed into F space. Equation (2) can then be written 
a s  

o(, : ¢  

Ig(1)(r)l=ff'(F)F-Vexp(-Fr)dF/f f ' ( F ) F -  7dF 

0 0 

The integrals were performed on a DEC-system 10 
computer using standard NAG algorithms and evaluated 
at 48 delay times to simulate data from a 48 channel 
correlator (rm~x= 48 T~). 

Log-normal distribution 

1 M 2 
f (M)  = /~-cr l e x p [ - ( l n ~ ) / 2 0 - 2  ] 

where m is the median, ff/l.=me ~2/2 and ff/lw=me a~*~/2 so 
Mw/M'. = e "~. A straightforward substitution of M by F -  2 
gives f '(F), which will of course be unnormalized. The 
value of F for m (F,.) is arbitrarily set at unity without loss 
of generality since it is the product of Fr that determines 
the value of the exponential in the integral for [g(1)(r)[. 
[Thus, in the calculation, the length of the trace can be 
varied by an appropriate choice of Zmax. ] In fact, for each 
polydispersity, data sets were calculated for ten different 
trace lengths with values of Fmrm, x between 0.4 and 4.0 in 
steps of 0.4. 

In the cumulants method of data fitting, no attempt was 
made to simulate uncertainty in the baseline of g(2/(r) as 
would occur in practice. The value obtained for F(=  al) 
scarcely changed with span length fitted; it increased by 
only 5 parts in 103 as Fmzma x varied from 4 to 0.4 for the 
highest polydispersity considered. In an actual 
experiment, statistical fluctuations would introduce 
uncertainties greater than this, so at these levels of 
polydispersity it is not necessary to take a series of runs of 
decreasing Zma x. The values obtained for F did indeed 
equal Fz, which for this distribution is F,,e-702/8. 

Estimates of the polydispersity obtained from equation 
(3) gave values which increased slightly as the length of 
trace fitted (i.e. rm~x) was reduced, and the values 
extrapolated to "rmax=0 gave good estimates for the 
polydispersity. For example, in the case of polydispersity 
Mw/M,,=l.18, the values calculated for Mw/M,, at 
l",nZmax=4 and 0.4 were 1.139 and 1.165 respectively. 
Indeed the extrapolated estimates of IVlw/M,,-1 were 
only 2~o, 3~o and 6~o below their actual values for the 
polydispersities 1.06, 1.12 and 1.18 respectively. 
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P o l y m e r  c o m m u n i c a t i o n s  

The single exponential force-fit procedure was applied 
directly to gt2)(z) as calculated from equation (1) with fl 
equal to 0.25, typical of experimental values. The change 
in r'( = B/2) with varying time span Tma x was more marked 
than in the previous procedure, but even so it was not 
great. As Fm'Cmax varied from 4 to 0.4, r" increased for the 
three polydispersities Mw/M, = 1.06, 1.12 and 1.18 by only 
1~o, 2~o and 3~o respectively. Thus the requirement always 
to fit to a certain fixed number of decay times (l/B) in 
order to obtain the same distribution average for 
comparison purposes can be relaxed without introducing 
much error. For  example, a variation of 10~o in Z~a x will 
change r" by only a fraction of a per cent. 

The value of r" for r" Zmax = 2 was slightly lower than Fz, 
the value given by the cumulants method. The variation 
with polydispersity is shown in Table 1, normalized 
against P'~. Also shown are the calculated changes in F, 
and Fw, the values of F for M = ~ t  and M~, since these 
molecular weights are often known and used to 
characterize samples. (Note that F, and F~ are not the 
number- and weight-average values for F, but r" z is the z- 
average value.) 

Uniform distribution 
f (M)  = 1/(2Am) for m - Am ~< ~/~< m + Am 

= 0 otherwise 

This distribution was chosen because of its simple 
mathematical form and as a contrast to the more 
smoothly changing log-normal distribution. In this case 
)~, = m and fflw = m + Am2 /3m so 
Mw/M, = 1 + (Am2/3m2). F,, the value of F at M = M,, was 
arbitrarily set at unity and values of the span F,Zma x 
ranged from 4 to 0.4. 

In the cumulants method, the variation of r" over the 
range of fitted spans was greater than in the case of the log- 
normal distribution. For  the three polydispersities, 
Mw/M, = 1.06, 1.12 and 1.18, r" increased by 0.25~, 0.62~ 
and 0.93~o respectively as F,zm, x decreased from 4 to 0.4. 
However, the extrapolated value of r at F, Zm,x=0 was 
again r'=. The polydispersity estimates calculated from 
equation (2) gave values of ~]tw/_~t, - 1 which were 10%, 
19~o and 29~o too low for the three polydispersities 
Mw/M, = 1.06, 1.12 and 1.18. The discrepancy is ten times 
greater than for the previous smoother distribution, and is 
most likely due to the sharp cut-off of the distribution. 

The values of r" from the single exponential force-fit 
procedure were again only slightly lower than the values 
of r'=. Inspection of Table 2 will reveal that the difference is 
never more than one per cent. 

Table I Log-normal distribution 

Mw/ M n r i tz  r nlrz r wlrz 

1.06 0.9967 1.0371 1.0073 
1.12 0 .9934 1.0734 1.01 43 
1.18 0 .9904 1.1090 1.0209 

Table 2 Uniform distribution 

Mwl M n r l r  z r n l rz  rw/rz 

1.06 0.9968 1.0365 1.0068 
1.12 0.9943 1.0711 1.01 21 
1.18 0.9923 1.1038 1.01 61 

Estimating polydispersity from the force-fit procedure 
Although the single exponential force-fit procedure 

does not provide an easy analytic means of estimating the 
polydispersity, it is possible to obtain an indication of this 
from a plot of the residuals between the fitted curve and 
the data points, which take the characteristic form shown 
in Figure 1. The relative amplitude of the variations, say as 
measured by the height of the central flat maximum, 
increases with polydispersity and the present study 
enables a calibration to be made. The height, relative to 
the amplitude of the exponential, is given in Figure 2 for 
both distributions and the three polydispersities. 

It is clear from these figures that data of high signal-to- 
noise ratio is required to obtain such an estimate, 
particularly for low polydisperse samples, otherwise the 
characteristic shape will be lost in the noise. 

A further note of caution is necessary, however, since a 
similar residual plot will be obtained if there is 
heterodyning or if there are internal motion effects, but 
these would also give misleading estimates in the 
cumulants method. 

Conclusion 
It has been shown that both methods of data fitting will 

give the correct value for k-°~ and both can give an 
estimate of the sample polydispersity. The choice of 
procedure may be determined by experimental 
considerations; in particular, uncertainty in the baseline 
of the correlation function may favour the use of the 
single-exponential force-fitting method in order to obtain 
reproducible values for D. Alternatively, the cumulants 
method may be easier to carry out with limited computing 
facility. 

The non-theta case is more complicated since G(F,c) 
does not simply scale with c as in the theta case. G(F,c) is 

. . . .  $ . . . . . . . . . . . .  A A ~ • • A • • • • • • & • • A & • • ~ & A  

• •&•A•&AA •A" -AA&&&AAA, 

F~ure 1 Characteristic ~ t t e r n  at residuals in force fitting a single 
exponential to the data 
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Figure 2 Variation of the height of the central maximum at the 
residuals with polydispersity, expressed as a percentage of the 
exponential amplitude 
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not just compressed or expanded along the F axis with 
changing c, but changes its shape. Thus the particular 
average of the distribution function which is determined 
by either of the two methods (F= or F) will change with 
concentration. Clearly this case requires further study. 
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Polymerization of hexachlorocyclotriphosphazene by sulphur and 
selenium 
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The thermal bulk polymerization of hexachlorocyclotriphosphazine is described. The possibility of 
obtaining soluble polymer using sulphur and selenium as catalysts was investigated. It was found that 
the catalytic activity of selenium was much lower than that of sulphur. Monomeric sulphur may be acting 
as a chlorine-attractive agent for hexachlorocyclotriphosphazine. 

K e y w o r d s  Polymerization; bulk thermal; catalysis; sulphur; selenium; 
hexachlorocyclotriphosphazine 

Introduction 
Hexachlorocyclotriphosphazene (NPCI2)3 polymerizes 

rapidly without gel formation, in glass or stainless steel 
reactors at 220°-29ff'C using catalysts ~ such as AICI3, 
Et3AI2CI3, Et3A1, Et2A1OEt, Br3B, A1, B, Cr, Ni, Mg, Cu, 
Mn, Co or Fe. The polymerization of(NPCI2) 3 in different 
solvents was reported by Retuert 2. The present work 
describes the thermal bulk polymerization of (NPCI2) 3 
and the possibility of obtaining soluble polymer using 
sulphur and selenium as catalysts. 

Experimental 
Hexachlorocyclotriphosphazene (NPCI2)3 was 

prepared by reaction of phosphorus pentachloride with 
ammonium chloride in tetrachloroethane 3. (M.pt. of pure 
trimer, 11Z;C.) 

A mixture of hexachlorocyclotriphosphazene (2.5 g) 
and small amount of sylphur or selenium was placed in a 
pyrex tube (200 × 40 mm) which was then evacuated to 10 
mm for 1 h, sealed and heated in an oven just below 300°C. 
When the polymerization was complete the product was 
treated with benzene and the polymer precipitated by 
addition of n-heptane using the method of Allcock 4. 
Unreacted trimer was recovered by vacuum distillation. 
As the precipitated polydichlorophosphazene was 
unstable in water, chlorine in the polymer was substituted 
with a nucleophilic reagent by refluxing in benzene for 
24 h. After the water was added to remove aniline 
hydrochloride formed during the reaction, the benzene 
solution was dried over anhydrous sodium sulphate. 

The M, and Mw of polydianilinophosphazene were 
determined by gel permeation chromatography using 
THF as the solvent. 

Results and Discussion 
The relation between yields of linear and crosslinked 

polymer or oligomer and reaction time at 250°C when 100 
mg of sulphur was added is shown in Figure 1. 

It is found that the maximum yield of linear 
polydianilinophosphazene occurs with a reaction time of 
15 h, the recovered product is mostly 
hexachlorocyclotriphosphazene and crosslinked polymer 
is formed after 23 h. Yield of linear 
polydianilinophosphazene is shown in Figure 2 when the 
amount of sulphur is changed and the reaction 
temperature and time are kept constant. 
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Figure 1 Relation between reaction time and oligomer (O), 
linear (O) or erosslinked polymer (z~) using sulphur at 250°C. 
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